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Abstract

We study the computability of domino snake problems on finitely generated groups. We provide general

properties of these problems and introduce new tools for their study. The first is the use of symbolic

dynamics to understand the set of all possible snakes. Using this approach we solve many variations of the

infinite snake problem including the geodesic snake problem. Next, we introduce a notion of embedding that

allows us to reduce the decidability of snake problems between groups. This notion enables us to establish

the undecidability of the infinite snake and ouroboros problems on nilpotent groups for any generating set,

given that we add a well-chosen element. Finally, we make use of monadic second order logic to prove that

domino snake problems are decidable on virtually free groups for all generating sets.

Keywords: Domino Snake Problems, Computability Theory, Symbolic Dynamics, Combinatorial Group
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1. Introduction

This article is an extended version of the conference paper [3]. It includes full proofs and new remarks,

as well as the study of the strong versions of the three main domino snake problems.

1.1. Wang Tiles and Snakes

Since their introduction more than 60 years ago [28], domino problems have had a long history of

providing complexity lower bounds and undecidability of numerous decision problems [6, 15, 16, 27]. The

input to these problems is a set of Wang tiles: unit square tiles with colored edges and fixed orientation.

The decision problems follow the same global structure; given a finite set of Wang tiles, is there an algorithm

to determine if they tile a particular shape or subset of the infinite grid such that adjacent tiles share the

same color along their common border? An interesting variant of this general formula are domino snake

problems. First introduced by Myers in 1979 [24], snake problems ask for threads –or snakes– of tiles that
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satisfy certain constraints. In particular, three of them stand-out. The infinite snake problem asks is there

exists a tiling of a self-avoiding bi-infinite path on the grid, the ouroboros problem asks if there exists a

non-trivial cycle on the grid, and the snake reachability problem asks if there exists a tiling of a self-avoiding

path between two prescribed points. There are also two variants of each of them: the normal version where

adjacency rules are only required to be respected along the trajectory of the snake, and the strong version

where the whole portion of the plane defined by the snake must be correctly tiled. These problems have

had their computability completely classified [1, 9, 10, 12, 13, 19] (see Theorem 3.4). In this article, we

expand the scope of domino snake problems to finitely generated groups, as has been done for other domino

problems [4], to understand how the underlying structure affects computability. We generalize Wang tiles as

tileset graphs (also known as nearest neighbour rules for subshifts of finite type) that capture the adjacency

rules.

We present three novel ways in which to approach these problems. The first is the use of symbolic

dynamics to understand the set of all possible snakes. Proposition 4.2 states that when this set is defined

through a regular language of forbidden patterns, the infinite snake problem becomes decidable. Using this

approach we solve many variations of the infinite snake problem including the geodesic snake problem for

some classes of groups. Next, we introduce a notion of embedding that allows us to reduce the decidability

of snake problems from one group to another. This notion enable us to establish the undecidability of the

infinite snake and ouroboros problems on a large class of groups –that most notably include nilpotent groups–

for any generating set, provided that we add a central torsion-free element. Finally, to tackle virtually free

groups, we express the three snake problems in the language of Monadic Second Order logic. Because for

this class of groups this fraction of logic is decidable, we show that our three decision problems are decidable

independently of the generating set.

2. Preliminaries

Given a finite alphabet A, we denote by An the set of words on A of length n, and A∗ the set of all finite

length words including the empty word ϵ. Furthermore, we denote by A+ = A∗ \ {ϵ} the set of non-empty

finite words over A. A factor v of a word w is a contiguous subword; we denote this by v ⊑ w. We denote

discrete intervals by Jn,mK = {n, n + 1, ...,m − 1,m}. We also denote the free group defined from the free

generating set S by FS . We denote disjoint union of U by sets {Vi}i∈I as U =
∐

i∈I V .

2.1. Symbolic Dynamics

Given a finite alphabet A, we define the full-shift over A as the set of configurations AZ = {x : Z → A}.

There is a natural Z-action on the full-shift called the shift, σ : AZ → AZ, given by σ(x)i = xi+1. The

full-shift is also endowed with the prodiscrete topology, making it a compact space.
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Let F ⊆ Z be a finite subset. A pattern of support F is an element p ∈ AF . We say a pattern p ∈ AF

appears in a configuration x ∈ AZ, denoted p ⊑ x, if there exists k ∈ Z such that xk+i = pi for all i ∈ F .

Given a set of patterns F , we can define the set of configurations where no pattern from F appears,

XF := {x ∈ AZ | ∀p ∈ F , p does not appear in x}.

A subshift is a subset of the full-shift X ⊆ AZ such that there exists a set of patterns F that verifies

X = XF . A classic result shows subshifts can be equivalently defined as closed σ-invariant subsets of the

full-shift. We say a subshift XF is

• a subshift of finite type (SFT) if F is finite,

• sofic if F is a regular language,

• effective if F is a decidable language.

Each class is strictly contained within the next. Sofic subshifts can be equivalently defined as the set of bi-

infinite walks on a labeled finite graph. It is therefore decidable, given the automaton or graph that defines

the subshift, to determine if the subshift is empty. Similarly, given a Turing machine for the forbidden

language of an effective subshift, we have a semi-algorithm to determine if the subshift is empty.

Given a subshift X ⊆ AZ, we define its language, L(X) ⊆ A∗ as the set of all factors appearing in

configurations from X, that is,

L(X) = {w ∈ A∗ | ∃x ∈ X, w ⊑ x}.

Any subshift can be defined by taking the complement of its language as forbidden patterns: X = XL(X)c .

Furthermore, a shift is sofic if and only if its language is regular.

Lastly, we say a configuration x ∈ X is periodic if there exists k ∈ Z∗ such that σk(x) = x. We say

the subshift X is aperiodic if it contains no periodic configurations. For a comprehensive introduction to

one-dimensional symbolic dynamics we refer the reader to [21].

2.2. Combinatorial Group Theory

Let G be a finitely generated (f.g.) group and S a finite generating set. Elements in the group are

represented as words on the alphabet S ∪ S−1 through the evaluation function w 7→ w. Two words w and

v represent the same element in G when w = v, and we denote it by w =G v. We say a word is reduced if it

contains no factor of the form ss−1 or s−1s with s ∈ S.

Definition 2.1. Let G be a group, S a subset of G and R a language on S ∪ S−1. We say (S,R) is a

presentation of G, denoted G = ⟨S | R⟩, if the group is isomorphic to ⟨S | R⟩ = FS/⟨⟨R⟩⟩, where ⟨⟨R⟩⟩ is
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the normal closure of R, i.e. the smallest normal subgroup containing R. We say G is recursively presented

if there exists a presentation (S,R) such that S is finite and R is recursively enumerable.

For a group G and a generating set S, we define:

WP(G,S) := {w ∈ (S ∪ S−1)∗ | w = 1G}.

Definition 2.2. The word problem (WP) of a group G with respect to a set of generators S asks to

determine, given a word w ∈ (S ∪ S−1)∗, if w ∈ WP(G,S).

We say a word w ∈ (S ∪ S−1)+ is G-reduced if w contains no factor in WP(G,S). We say a word w ∈

(S ∪S−1)∗ is a geodesic if for all words v ∈ (S ∪S−1)∗ such that w = v we have |w| ≤ |v|. For a given group

G and generating set S, we denote its language of geodesics by Geo(G,S).

We say an element g ∈ G has torsion if there exists n ≥ 1 such that gn = 1G. If there is no such n, we

say g is torsion-free. Analogously, we say G is a torsion group if all of its elements have torsion. Otherwise

if the only element of finite order is 1G we say the group is torsion-free.

Finally, let P be a class of groups (for example abelian groups, free groups, etc). We say a group G is

virtually P, if there exists a finite index subgroup H ≤ G that is in P.

3. Snake Behaviour

Although the original snake problems were posed for the Wang tile model, we make use of a different,

yet equivalent, formalism (see [3] for a proof of the equivalence of the two models).

Definition 3.1. A tileset graph (or tileset) for a f.g. group (G,S) is a finite directed multigraph Γ = (A,B)

such that each edge is given by (a, a′, s) ∈ B ⊆ A2 × (S ∪ S−1), where a and a′ are its initial and final

vertices respectively, and if (a, a′, s) ∈ B then (a′, a, s−1) ∈ B.

In what follows, I denotes Z, N, or a discrete interval Jn,mK, depending on the context.

Definition 3.2. Let (G,S) be a f.g. group, and Γ = (A,B) a tileset for the pair. A snake or Γ-snake

is a pair of functions (ω, ζ), where ω : I → G is an injective function, referred to as the snake’s skeleton

and ζ : I → A the snake’s scales. These pairs must satisfy that dωi := ω(i)−1ω(i + 1) ∈ S ∪ S−1 and

(ζ(i), ζ(i+ 1), dωi) must be an edge in Γ.
It may happen that for a given Γ-snake (ω, ζ) with ω : I → G, there exist two indices i, i′ ∈ I such that

ω(i)−1ω(i′) = s ∈ S ∪ S−1 but |i′ − i| ≠ 1. In this case the snake folds on itself, but we do not require

(ζ(i), ζ(i′), s) to be an edge in Γ (see Figure 3). A Γ-snake that fulfills this additional condition for every

pair of indices i, i′ ∈ I such that ω(i)−1ω(i′) ∈ S ∪ S−1 is called a strong Γ-snake.

We say a snake (ω, ζ) connects the points p, q ∈ G if there exists a n ∈ N such that (ω, ζ) is defined over

J0, nK, ω(0) = p and ω(n) = q. We say a snake is bi-infinite if its domain is Z. A Γ-ouroboros is a Γ-snake
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(1, 0)

(0, 1)

Figure 1: A tileset graph Γ that do not tile Z2 for the generating set {(1, 0), (0, 1)} (edges labeled with generator inverses are

omitted for more readability) and a Γ-snake with I = N.
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F2 = ⟨a, b⟩ Z2 = ⟨a, b | ab = ba⟩

Figure 2: An example of tileset graph Γ for groups with two generators a, b (inverses are omitted for simplicity). There

exists a Γ-snake for the free group F2 = ⟨a, b⟩ as pictured in the middle, with I = Z and ω(I) = (aba−1b−1)Z, but not for

Z2 = ⟨a, b | ab = ba⟩ since one of the finite snakes on the right must appear but cannot be extended into an infinite one.

defined over J0, nK, with n ≥ 2, that is injective except for ω(0) = ω(n). In other words, a Γ-ouroboros is a

well-tiled simple non-trivial cycle. We study the following three decision problems:

Definition 3.3. Let (G,S) be a f.g. group. Given a tileset Γ for (G,S) and two points p, q ∈ G,

• the infinite snake problem asks if there exists a bi-infinite Γ-snake,

• the ouroboros problem asks if there exists a Γ-ouroboros,

• the snake reachability problem asks if there exists a Γ-snake connecting p and q.

These three problems can be formulated for strong snakes, and we can also talk about the seeded variants

of these three problems. In the seeded versions, we add a selected tile a0 ∈ A to our input and ask for the
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a, b

a

a, b

a

a tileset graph Γ

for Z2 = ⟨a, b | ab = ba⟩

Γ-snake but not a strong one

✓

×

strong Γ-snake

✓

Figure 3: A tileset graph Γ on the left (inverses are omitted for simplicity). We consider Z2 with its standard presentation

⟨a, b | ab = ba⟩. On the top right a Γ-snake for Z2 that is not strong. On the bottom right a strong Γ-snake for Z2.

corresponding snake/ouroboros to satisfy ζ(0) = a0.

All of these problems – for both snakes and strong snakes – have been studied and classified for Z2 with

its standard generating set {(1, 0), (0, 1)}.

Theorem 3.4. Let S be the standard generating set for Z2. Then,

1. The (strong) snake reachability problem for (Z2, S) is PSPACE-complete [13],

2. The infinite (strong) snake problem for (Z2, S) is Π0
1-complete [1],

3. The (strong) ouroboros problem for (Z2, S) is Σ0
1-complete [9, 19].

In addition, the seeded variants of these problems are undecidable [9].

Our aim is to extend these results to larger classes of groups and different generating sets.

3.1. General Properties

Let (G,S) be a finitely generated group and Γ a tileset. If there exists a snake (ω, ζ), then for every

g ∈ G, (gω, ζ) is a snake. If we define ω̃(i) = gω(i), then dω̃ = dω, as the adjacency of ζ in Γ remains

unchanged. In particular, there exists a snake (ω′, ζ) such that ω′(0) = 1G, i.e. we may assume that a snake

starts at the identity 1G.

The next result is a straightforward generalization of a result due to Kari [19] for Z2. We provide the

proof for completion.

Proposition 3.5. Let Γ be a tileset for a f.g. group (G,S). Then, the following are equivalent:
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1. Γ admits a bi-infinite snake,

2. Γ admits a one-way infinite snake,

3. Γ admits a snake of every length.

Proof. Notice that a bi-infinite snake always contains a one-way infinite snake, and a one-way infinite snake

contains snakes of arbitrary length. Therefore, it remains to prove (3) =⇒ (1). Let (ωn, ζn)n∈N be a sequence

of snakes with ωn : J−n, nK → G which we can take to satisfy ωn(0) = 1G for all n ∈ N. As we have an

infinite amount of snakes, and for every m ≥ 1, BG(1G,m) the ball of radius m is finite, we can extract a

subsequence φ : N → N such that ωφ(n)(J−m,mK) and ζφ(n)(J−m,mK) coincide for all n ∈ N. By iterating

this process we obtain a bi-infinite snake (ω, ζ).

This result implies that a tileset that admits no snakes will fail to tile any snake longer than a certain

length. Therefore, if we have a procedure to test snakes of increasing length, we have a semi-algorithm to

test if a tileset does not admit an infinite snake.

Corollary 3.6. If G has decidable word problem, the infinite snake problem is in Π0
1.

Proof. Let Γ = (A,B) be a tileset graph for (G,S). We will create a recursive process that will test larger

and larger snakes. Define F(0) = {ω0} where ω0 : {0} → {ϵ} and S be the set of snakes (ω0, ζ) with

ζ : {0} → VΓ. Our recursive procedure will take skeletons in F(n) and try to tile them without mismatches.

All snakes that we obtain with this procedure will define the set S(n). We proceed as follows:

• For every ω ∈ F(n), we create functions ωs,t : J−n− 1, n+1K → (S ∪S−1)2n+1 for every s, t ∈ S ∪S−1,

by

ωs,t(i) =


ω(i) if i ∈ J−n, nK

ω(−n)s if i = −n− 1

ω(n)t if i = n+ 1

.

By using the algorithm for the word problem, we select those functions such that ωs,t(±(n + 1)) do

not create new factors that evaluate to the identity, and add them to F(n+1).

• Next, for every ω ∈ F(n+1) we test all possible tilings of ω(J−n, nK) and add the pairs that are correctly

tiled to S(n+1).

Thus, we can enumerate the sets of finite snakes S(n). We can conclude that the infinite snake problem is

Π0
1 as Proposition 3.5 tells us that there is no bi-infinite Γ-snake if and only if there exists n ∈ N such that

S(n) = ∅.

Remark 3.7. In the case of strong snakes, the three statements in Proposition 3.5 are equivalent to the

existence of an infinite, connected subset P of G that is correctly tiled by Γ. In other words, if there is a
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a configuration x : P → A such that for all g ∈ P and s ∈ S ∪ S−1 such that gs ∈ P , (x(g), x(gs), s) is an

edge in Γ. Then, the proof of Corollary 3.6 shows that the infinite strong snake problem is in Π0
1 for groups

with decidable word problem.

A similar process can be done for the ouroboros problem.

Proposition 3.8. If G has decidable word problem, the ouroboros problem is in Σ0
1.

Proof. Let Γ be a tileset graph for (G,S). For each n ≥ 1, we test each word of length n to see if it defines

a simple loop and if it admits a valid tiling. More precisely, for w ∈ (S ∪ S−1)n, we use the word problem

algorithm to check if w is G-reduced and evaluates to 1G. If it is reduced, we test all possible tilings by Γ

of the path defined by following the generators in w. If we find a valid tiling, we accept. If not, we keep

iterating with the next word length n and eventually with words of length n+ 1.

If there is a Γ-ouroboros, this process with halt and accept. Similarly, if the process halts we have found

a Γ-ouroboros. Finally, if there is no Γ-ouroboros the process continues indefinitely.

Lemma 3.9. Let (G,S) be a f.g. group, (H,T ) a f.g. subgroup of G and w ∈ (S ∪ S−1)+. Then,

• The infinite snake, ouroboros and reachability problems in (H,T ) many one-reduce to their respective

analogues in (G,S ∪ T ).

• The infinite snake, ouroboros and reachability problems in (G,S) many one-reduce to their respective

analogues in (G,S ∪ {w}).

Proof. Any tileset graph for (H,T ) is a tileset graph for (G,S ∪ T ), and any tileset graph for (G,S) is a

tileset graph for (G,S ∪ {w}).

4. Ossuary

Much of the complexity of snakes comes from the paths they trace on the underlying group. It stands

to reason that understanding the structure of all possible injective bi-infinite paths on the group can shed

light on the computability of the infinite snake problem. Let G be a f.g. group with S a set of generators.

The skeleton subshift of the pair (G,S) is defined as

XG,S := {x ∈ (S ∪ S−1)Z | ∀w ⊑ x, w ̸∈ WP(G,S)}.

This subshift is the set of all possible skeletons; recall from Definition 3.2 that for any skeleton ω, we can

define dω : Z → S ∪ S−1 as dωi = ω(i)−1ω(i+ 1). Thus, for any infinite snake (ω, ζ), because ω is injective

dω ∈ XG,S .

This formalism allows us to introduce variations of the infinite snake problem where we ask for additional

properties on the skeleton. We say a subset Y ⊆ XG,S is skeletal if it is shift-invariant. In particular, all

subshifts of XG,S are skeletal.
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Definition 4.1. Let Y be a skeletal subset. The Y -snake problem asks, given a tileset Γ, does there exist

a bi-infinite Γ-snake (ω, ζ) such that dω ∈ Y ?

4.1. Skeletons and Decidability

A snake (ω, ζ) can be seen as two walks that follow the same labels: ω is a self-avoiding walk on the

Cayley graph of the group, and ζ a walk on the tileset graph. Therefore, if we find the description of a

bi-infinite walk, x ∈ (S ∪ S−1)Z, that avoids cycles on the Cayley graph and represents a valid walk on the

tileset graph, we have found a snake.

For (G,S) a f.g. group, Γ a tileset graph, denote XΓ ⊆
(
S ∪ S−1

)Z
the subshift whose configurations

are the labels of bi-infinite paths over Γ. This definition makes XΓ a sofic subshift.

Proposition 4.2. Let (G,S) be a f.g. group, Γ a tileset graph and Y a non-empty skeletal subset. Then

X = Y ∩XΓ is non-empty if and only if there is a bi-infinite Γ-snake (ω, ζ) with dω ∈ Y . In addition, if Y

is an effective/sofic subshift, then X is an effective/sofic subshift.

Proof. Let Γ = (A,B) be a tileset for G, with generating set S. Let X be the intersection X = Y ∩ XΓ.

Because XΓ is sofic, X will be an effective (resp. sofic) subshift when Y is an effective (resp. sofic) subshift.

Assume we have a bi-infinite snake (ω, ζ) such that dω ∈ Y . As the pair is a Γ-snake, for all i ∈ Z the

transition from ζ(i) to ζ(i + 1) is an edge on Γ labeled by dωi. Therefore dω ∈ XΓ, and as a consequence

dω ∈ X. Conversely, suppose there exists x ∈ X. Let i : Z → A be the function that gives us the initial

vertex of every traversed edge. That is, i(i) is the departure vertex for the edge traversed in xi. Then,

define the snake (ωx, ζx) with scales ζx(i) = i(i), and skeleton ωx : Z → G by ωx(i) = x[0,i] when i ≥ 0

and (x[i,0])
−1 when i < 0. This skeleton satisfies dωx(i) = xi and therefore dωx ∈ Y . Furthermore, because

Y ⊆ XG,S we have that wx(Z) ⊆ G is injective.

Proposition 4.2 reduces the problem of finding an infinite Y -snake, to the problem of emptiness of the

intersection of two one-dimensional subshifts. As previously stated determining if a subshift is empty is

co-recursively enumerable for effective subshifts, and decidable for sofics. Because in these cases X =

XΓ ∩ Y can be effectively constructed from the tileset graph, we can provide a semi-algorithm when the

skeleton is effective. This is true for the class of recursively presented groups. Because these groups have

recursively enumerable word problem, WP(G,S) is recursively enumerable for all finite generating sets. This

enumeration gives us an enumeration of the forbidden patterns of our subshift.

Proposition 4.3. Let G be a recursively presented group. Then XG,S is effective for every finite generating

set S.

This allows us to state the following proposition.
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Proposition 4.4. Let Y be a skeletal subshift. Then, if Y is sofic (resp. effective) the Y -snake problem

is decidable (resp. in Π0
1). In particular, if G is recursively presented, the infinite snake problem for any

generating set is in Π0
1.

Remark 4.5. The converse of the first statement of the proposition does not hold in general: there are

pairs (G,S) that have decidable infinite snake problem but whose skeleton is not sofic. Take Z with the

generating set {2, 3}, where the generators are denoted s and t respectively. Then, for every n ∈ N the word

wn = tsn+1t−1sn is in the language of the skeleton (see Figure 4). If we suppose the skeleton is sofic, then

its language is regular. By using the pumping lemma on wn, we obtain a contradiction.

Figure 4: The configuration used for the pumping lemma (with n = 4) depicted in the Cayley graph of Z with respect to the

generating set {2, 3}. The blue edges represent 2 and the red edges 3.

Nevertheless, we will see in Section 7 that (Z, {2, 3}) has decidable infinite snake problem.

Remark 4.6. Proposition 4.4 relies on the fact that certain classes of languages are stable under intersec-

tions with a regular language. It is reasonable to ask what happens to the decidability of the problem if Y

is defined by a language in such a class. There are two ways in which to do this. We can either ask for Y

to be defined by a set of forbidden patterns belonging to the class, in which case Y would be a subshift, or

we can ask for Y itself to be a language (of infinite words) in the class, in which case Y may not be closed.

For instance, take the classes defined by blind multicounter automata. Blind multicounter automata are a

special case of G-automata, where the group G is Zd for some d ≥ 1. A G-automaton is a finite deterministic

automata along with a map that associates a group element to each transition. A word is accepted by the

automata if it arrives at an accepting state and the group element obtained by right-multiplying the elements

associated to each transition, is the identity (see [29] for more information on G-automata). In particular,

this class of languages is closed under intersection with a regular language.

Let us see that in the cases where Y is defined by a set of forbidden patterns accepted by a blind

multicounter automaton, the Y -snake problem may be undecidable. Let L(G,S) be the set of locally

admissible words for XG,S , that is, w ∈ L(G,S) if and only if it contains no factor from WP(G,S). Because

WP(G,S) is accepted by a G-automaton, we have that

L(G,S)c = (S ∪ S−1)∗(WP(G,S) \ {ϵ})(S ∪ S−1)∗,

is also accepted by a G-automaton. By definition, XG,S = XL(G,S)c , meaning that the skeleton subshift for

(G,S) is defined by a set of forbidden patterns that is accepted by a G-automaton. Thus, XZ2,S is defined
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by a set of forbidden patterns that is accepted by a blind 2-counter automaton and has undecidable snake

problem by Theorem 3.4.

Nevertheless, if we ask for the configurations from Y to be accepted synchronously by blind multicounter

automata [14], the problem becomes decidable. By [14, Theorem 4.2] we know that the intersection between

a regular language and a language accepted synchronously by a blind counter automaton is in the latter class,

and the automaton that accepts the intersection is effectively constructed. Thus, we can effectively obtain

the blind multicounter automata synchronously accepting the intersection of XΓ and Y . Finally, because

the emptiness problem for this class of languages is decidable [14, Theorem 3.3], the Y -snake problem is

decidable by Proposition 4.2.

Theorem 4.7. The infinite snake problem in Z2 restricted to 2 or 3 directions among (1, 0), (0, 1), (−1, 0), (0,−1)

is decidable.

Proof. The set of skeletons of snakes restricted to 3 directions, for instance left, right and up (denoted by

a−1, a and b respectively), is the subshift Y3 ⊆ {a, a−1, b}Z where the only forbidden words are aa−1 and

a−1a. As Y3 is a skeletal SFT of XZ2,{a,b}, by Proposition 4.4, the Y3-snake problem is decidable. The case

of two directions is analogous as Y2 is the full shift on the two generators a and b.

A natural variation of the infinite snake problem, from the point of view of group theory, is asking if

there is an infinite snake whose skeleton defines a geodesic. These skeletons are captured by the geodesic

skeleton subshift; a subshift of XG,S comprised exclusively of bi-infinite geodesic rays. Formally,

Xg
G,S = {x ∈ XG,S | ∀w ⊑ x,w′ =G w : |w| ≤ |w′|}.

This subshift can be equivalently defined through the set of forbidden patterns given by Geo(G,S).

Then, by the definition of a sofic shift, we can state the following proposition.

Proposition 4.8. Let (G,S) be a f.g. group. If Geo(G,S) is regular, then Xg
G,S is sofic.

Geo(G,S) is known to be regular for all generating sets in abelian groups [25] and hyperbolic groups [11],

and for some generating sets in many other classes of groups [2, 7, 17, 18, 25]. Proposition 4.2 implies that

the geodesic infinite snake problem is decidable for all such (G,S); most notably for Z2 with its standard

generating set.

Theorem 4.9. The geodesic infinite snake problem is decidable for any f.g. group (G,S) such that Geo(G,S)

is regular. In particular, it is decidable for abelian and hyperbolic groups for all generating sets.

What happens with skeletal subsets that are not closed and/or not effective? Ebbinghaus showed exam-

ples of skeletal subsests whose Y -snake problem is outside of the arithmetical hierarchy [10]. If we define Y

to be the skeletal subset of (Z2, {a, b}) of skeletons that are not eventually a straight line, then, Y is not
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closed, and deciding if there exists a Y -skeleton snake is Σ1
1-complete. Similarly, if we take the Y to be the

set of non-computable skeletons of Z2, the Y -skeleton problem is Σ1
1-complete.

5. Snake Embeddings

Let us introduce a suitable notion of embedding, that guarantees a reduction of snake problems. To do

this, we will make use of a specific class of finite-state transducer called invertible-reversible transducer, that

will translate generators of one group to another in an automatic manner.

Definition 5.1. An invertible-reversible transducer M is a tuple (Q,S, T, q0, δ, η) where,

• Q is a finite set of states,

• S, T are finite alphabets,

• q0 ∈ Q is an initial state,

• δ : Q× S → Q is a transition function,

• η : Q× S → T is such that η(q, ·) is an injective function for all q ∈ Q,

such that for all q ∈ Q and s ∈ S there exists a unique q′ such that δ(q′, s) = q.

We extend both maps, η and δ, to manage inverses of S by setting η(q, s−1) = η(q′, s)−1 and δ(q, s−1) =

q′, where q′ is the unique state satisfying δ(q′, s) = q. Furthermore, we denote by qw the state of M reached

after reading the word w ∈ (S ∪ S−1)∗ starting from q0. We introduce the function fM : (S ∪ S−1)∗ →

(T ∪ T−1)∗ recursively defined as fM(ϵ) = ϵ and fM(ws±1) = fM(w)η(qw, s
±1).

Definition 5.2. Let (G,S) and (H,T ) be two f.g. groups. A map ϕ : G → H is called a snake embedding

if there exists a transducer M such that ϕ(g) = fM(w) for all w ∈ (S ∪ S−1)∗ such that w̄ = g, and

fM(w) =H fM(w′) if and only if w =G w′.

Remark 5.3. Snake-embeddings are a strictly stronger form of a translation-like action. Such an action

is a right group action ∗ : G → H that is free, i.e. h ∗ g = h implies g = 1G, and {d(h, h ∗ g) | h ∈ H} is

bounded for all g ∈ G. A straightforward argument shows that if ϕ : (G,S) → (H,T ) is a snake-embedding,

then h ∗ g = hϕ(g) is a translation-like action. The converse is not true: there are translation-like actions

that are not defined by snake-embeddings. For instance, from Definition 5.2 we see that there is a snake

embedding from Z to a group G if and only if Z is a subgroup of G. Nevertheless, infinite torsion groups

admit translation-like actions from Z, as shown by Seward in [26], but do not contain Z as a subgroup.
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Proposition 5.4. Let (G,S) and (H,T ) be two finitely generated groups such that there exists a snake-

embedding ϕ : G → H. Then, the infinite snake (resp. ouroboros) problem on (G,S) many-one reduces to

the infinite snake (resp. ouroboros) problem on (H,T ).

The reduction consists in taking a tileset for (G,S) and using the transducer to create a tileset for (H,T )

that is consistent with the structure of G. Because the transducer is locally invertible, we have a computable

way to transform a bi-infinite snake from one group to the other.

Proof. Let Γ = (A,B) be a tileset for (G,S). We will define Γ̃, a tileset for (H,T ) by using the transducer

M given by the snake embedding. The set of vertices is given by Ã = A×Q and we add an edge from (u, q1)

to (v, q2) labeled by t if and only if there is an edge (u, v) in B labeled by s, in addition to δ(q1, s) = q2 and

η(q1, s) = t. Because B is finite and M is a finite automaton, the reduction is computable.

Γ : a a′

M : q q′

⇒ Γ̃ : (a, q) (a′, q′)

s

s | t

t

Figure 5: Reducing snake problems using a snake embedding.

Now, let (ω, ζ) be a Γ-snake. We define (ω̃, ζ̃) on (H,T ) by ω̃(i) = ϕ(ω(i)) and ζ̃(i) = (ζ(i), qω(i)). As

ω is injective and ϕ is injective, ω̃ is injective. Furthermore, by definition there is an edge in Γ̃ from ζ̃(i)

to ζ̃(i + 1), as there is one from ζ(i) to ζ(i + 1) in Γ, δ(qω(i), dω(i)) = qω(i+1) and η(qω(i), dω(i)) = dω̃(i).

Thus, (ω̃, ζ̃) is a Γ̃-snake.

Conversely, let (ω̃, ζ̃) be a Γ̃-snake such that ω̃(0) = 1H . Our objective is to find a Γ-snake (ω, ζ) such

that ω̃ = ϕ(ω). To do this, we introduce some notation. Let us denote ζ̃(i) = (q(i), ui) and for any q ∈ Q

we denote by θq : η(q, S) → S the inverse of the function η(q, ·) : S → η(q, S). As q(0) may not necessarily

be q0, let w ∈ (S ∪ S−1)∗ such that qw = q(0) and g the element w represents in G. Without loss of

generality we can change our snake (ω̃, ζ̃) so that ω̃(0) = ϕ(g). Now, define ω recursively by ω(0) = g and

ω(i+ 1) = ω(i) · θq(i+1)(dω̃(i)).

Claim: q(i) = qwdω(0)...dω(i−1) and ω̃(i) = ϕ(ω(i)).

We will prove the claim by induction on i ≥ 0, as the case for i < 0 works analogously. The base case

is clear by definition, as we imposed that qw = q(0) and ϕ(ω(0)) = ω̃(0). Next, assume our hypothesis is
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true for all integers up to i. Because ζ̃(i) is placed next to ζ̃(i + 1) along the generator dω̃(i) ∈ T , and we

defined dω(i) to be θq(i+1)(dω̃(i)), the transition function δ sends q(i) to q(i + 1) when reading dω(i). By

the induction hypothesis q(i) is the state at which we arrive after reading the word wdω(0) ... dω(i−1), and

therefore q(i+ 1) is the state at which we arrive after reading wdω(0) ... dω(i− 1)dω(i). Finally, we have

ϕ(ω(i+ 1)) = ϕ(ω(i) · dω(i))

= ϕ(dω(0) · ... · dω(i− 1) · dω(i))

= fM(dω(0) · ... · dω(i− 1) · dω(i))

= ϕ(ω(i))η(q(i+ 1), dω(i))

= ω̃(i)η(q(i+ 1), dω(i)).

As we chose dω(i) = θq(i+1)(dω̃(i)), we have η(q(i+ 1), dω(i)) = dω̃(i). Thus,

ϕ(ω(i+ 1)) = ω̃(i)dω̃(i) = ω̃(i+ 1).

The Claim shows that ω is injective, as ϕ is injective. Finally, we set ζ(i) = ui, that is, the second

element of the ordered pair ζ̃(i). Consequently, (ω, ζ) is a Γ-snake.

For the ouroboros problem the same procedure applies because if (ω, ζ) is an ouroboros, then (gω, ζ) is

also an ouroboros for every g ∈ G.

Using snake-embeddings we can prove that non-Z finitely generated free abelian groups have undecidable

snake problems.

Proposition 5.5. The infinite snake and ouroboros problems on Zd with d ≥ 2 are undecidable for all

generating sets.

Proof. Let S = {v1, ..., vn} be a generating set for Zd. As S generates the group, there are two generators

vi1 and vi2 , such that vi1Z∩vi2Z = {1Zd}. Then, H = ⟨vi1 , vi2⟩ ≃ Z2 and there is clearly a snake-embedding

from Z2 to H. Finally, by Lemma 3.9, the infinite snake and ouroboros problems are undecidable for

(Zd, S).

6. Virtually Nilpotent Groups

Through the use of snake-embeddings and skeleton subshifts, we extend undecidability results from

abelian groups to the strictly larger class of virtually nilpotent groups. For a groupG we define Z0(G) = {1G}

and

Zi+1(G) = {g ∈ G | ghg−1h−1 ∈ Zi(G),∀h ∈ G}.

The set Z1(G) is called the center of G, and by definition is the set of elements that commute with every

element in G. We say a group is nilpotent if there exists i ≥ 0 such that Zi(G) = G.
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The next Lemma is stated for a larger class of groups that contain nilpotent groups, that will allow us

to prove the undecidability results on the latter class.

Lemma 6.1. Let (G,S) be a f.g. group that contains an infinite order element g in its center, such that

G/⟨g⟩ is not a torsion group. Then, there is a snake embedding from (Z2, {a, b}) into (G,S ∪ {g}), where

{a, b} is the standard generating set for Z2.

The idea of the proof is finding a distorted copy of Z2 within (G,S ∪ {g}). One of the copies of Z is

given by ⟨g⟩ ≃ Z. The other is obtained through the following result.

Proposition 6.2. Let (G,S) be a f.g. group. Then, G is a torsion group if and only if XG,S is aperiodic.

Proof. Let g ∈ G be the torsion-free element with the smallest word length. Let w be a geodesic representing

g. Notice w is cyclically reduced, if not, the cyclic reduction of w would be a shorter torsion-free element.

Let us prove that wn is G-reduced by induction over n ≥ 2.

For the base case, suppose there exists a strict factor w′ ⊑ w2 such that w′ =G 1G. Because w is a

geodesic, it does not contain factors that evaluate to the identity. Therefore, w′ = uv with w = wuu = vwv

for two words wu, wv ∈ (S ∪ S−1)∗. Suppose u and v have different lengths, for instance |u| < |v|. Because

u =G v−1, we have w =G wuv
−1 and |w| > |wuv

−1| which contradicts the fact that w is a geodesic. Thus

|u| = |v|. If their lengths are strictly bigger than 1
2 |w|, then the word obtained by deleting w′ from w2 will

represent a torsion-free element of length strictly smaller than |w|. Therefore |u| = |v| ≤ 1
2 |w|. Then, w can

be written as w = urv for some r ∈ (S ∪ S−1)∗. But, because v =G u−1 we have w =G uru−1 which is a

contradiction. This means w2 is G-reduced.

Next, assume wn is G-reduced for n > 2. Suppose there is a strict factor w′ = uwn−1v ⊑ wn+1 with

u, v ∈ (S ∪ S−1)∗, such that w′ =G 1G. Because w′ is a strict factor, either |u| < |w| or |v| < |w|. Without

loss of generality we assume the former. We tackle two cases separately:

• If v = w, we have w′ = uwn. Then u =G w−n is torsion-free and |u| < |w|, which is a contradiction.

• If |v| < |w|, let us write w = wuu = vwv for two words wu, wv ∈ (S∪S−1)+. Then, w′ can be written as

w′ = uv(wvv)
n−2. Because w = vwv is torsion-free, wvv also is, and consequently uv =G (wvv)

−(n−2)

is torsion-free. Notice that uv is G-reduced as it is a factor of w2. Because w is the smallest-torsion

free element, |u|+ |v| = |uv| ≥ |w|. Similarly, as w′ =G 1G we know wuwv =G wn+1 is torsion-free and

G-reduced (also a factor of w2). Yet, |w2| = |wu|+ |u|+ |v|+ |wv| which means |wuwv| ≤ |w|. As w is

the smallest torsion-free element |w| = |wu|+ |wv| = |u|+ |v|. By using the fact that w = wuu = vwv

we inevitably have w = uv. This implies w′ = uwn−1v = wn, which is a contradiction.

As wn is always G-reduced, the configuration w∞ contains no factors that evaluate to the identity and is

therefore in XG,S .
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Suppose G is a torsion group and let x ∈ XG,S be a periodic configuration that infinitely repeats the

word w. Let g = w. By definition of the skeleton subshift, gn = wn ̸= 1G for all n ∈ N. This contradicts

the fact that G is a torsion group.

Using g and a periodic point from this proposition we construct the snake-embedding.

of Lemma 6.1. Let us take G and g as in the statement and Z2 = ⟨a, b | [a, b]⟩. Because G/⟨g⟩ = ⟨S⟩ is not a

torsion group, by Proposition 6.2 there exists w ∈ (S ∪ S−1)∗ such that w∞ ∈ XG/⟨g⟩,S . In other words, no

factors of the infinite configuration w∞ evaluates to gn for some n ∈ Z. We construct the snake-embedding

by defining the invertible-reversible transducer M as follows. The set of states is Q = {q0, ..., qm−1}, where

m = |w|, with transition function δ such that δ(qi, a) = qi and δ(qi, b) = q(i+1 mod m). The transducer is

given by η(qi, a) = g and η(qi, b) = wi. These definitions guarantee that M is a transducer.

q0 q1 . . . qm−1
b | w1 b | w2 b | wm−1

b | wm

a | g a | g
a | g

Figure 6: The transducer M that embeds Z2 into (G,S ∪ {g}). The notation s | t represents η(q, s) = t for the corresponding

state.

Let f = fM be the function associated to M. Take v ∈ {a, b, a−1, b−1}∗. As Z2 is abelian, we can

express v in the normal form v =Z2 akbl with k = |v|a − |v|a−1 and l = |v|b − |v|b−1 . If we prove that

fM(v) =G fM(akbl), then the function ϕ(g) = fM(v), for any v representing g ∈ Z2, defines a snake-

embedding. Indeed, if we have such identity, because any two words v1 and v2 are equal in Z2 if and only

if they have the same normal form, ϕ will be well-defined and injective.

Let x = w∞ be the periodic configuration that will specify one of copies of Z in G. By the transducer’s

definition, fM(akbl) = gkx[0,l−1]. We will show that fM(v) =G gkx[0,l−1] through induction on the length

of v. If v = ϵ, then fM(ϵ) =G 1G. Next, suppose the equality is true for all words u such that |u| ≤ n. We

arrive at different cases:

• If v = v′a and v′ has normal form akbl, then fM(v) = fM(v′)η(ql mod m, a) = fM(v′)g. By induction,

we know fM(v′) = gkx[0,l−1] and thus fM(v) = gkx[0,l−1]g. But, as g is in the center of G, we can

make it commute with x[0,l−1] arriving at fM(v) =G gk+1x[0,l−1].
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• If v = v′b and v′ has normal form akbl, then fM(v) = fM(v′)η(ql mod m, b) = fM(v′)wl mod m. By

induction, we know fM(v′) = gkx[0,l−1] and thus fM(v) = gkx[0,l−1]wl mod m. But by definition

x[0,l] = x[0,l−1]wl mod m, therefore fM(v) =G gk+1x[0,l].

Proposition 6.3. Let (G,S) be a f.g. group that contains a infinite order element g in its center and G/⟨g⟩

is not a torsion group. Then, (G,S ∪ {g}) has undecidable infinite snake and ouroboros problems.

Proof. By Lemma 6.1, there is a snake-embedding from Z2 to (G,S ∪ {g}). Combining Proposition 5.4 and

Theorem 3.4, we conclude that both problems are undecidable on (G,S ∪ {g}).

Theorem 6.4. Let (G,S) be a f.g. infinite, non-virtually Z, nilpotent group. Then there exists g such that

(G,S ∪ {g}) has undecidable infinite snake and ouroboros problems.

Proof. Let G be a f.g. infinite nilpotent group that is not virtually cyclic. Because G is nilpotent, there

exists a torsion-free element g ∈ Z1(G). Furthermore no quotient of G is an infinite torsion group [8]. In

addition, as G is not virtually cyclic G/⟨g⟩ is not finite. Therefore, by Proposition 6.3, both problems are

undecidable on (G,S ∪ {g}).

Through Lemma 3.9 we obtain undecidability for virtually nilpotent groups.

Corollary 6.5. Let G be a f.g. infinite, non virtually Z, virtually nilpotent group. Then there exists a finite

generating set S such that (G,S) has undecidable infinite snake and ouroboros problems.

7. Snakes and Logic

We want to express snake problems as a formula that can be shown to be satisfied for a large class of

Cayley graphs. To do this we use Monadic Second-Order (MSO) logic, as has been previously been done for

the domino problem. Our formalism is inspired by [5].

Let Λ = (V,E) be an S-labeled graph with root v0. This fraction of logic consists of variables P,Q,R, ...

that represent subsets of vertices of Λ, along with the constant set {v0}; as well as an operation for each

s ∈ S, P · s, representing all vertices reached when traversing an edge labeled by s from a vertex in P . In

addition, we can use the relation ⊆, Boolean operators ∧,∨,¬ and quantifiers ∀,∃. For instance, we can

express set equality by the formula (P = Q) ≡ (P ⊆ Q ∧Q ⊆ P ) and emptiness by (P = ∅) ≡ ∀Q(P ⊆ Q).

We can also manipulate individual vertices, as being a singleton is expressed by

(|P | = 1) ≡ P ̸= ∅ ∧ ∀Q ⊆ P (Q = ∅ ∨ P = Q).
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For example, ∀v ∈ P is shorthand notation for the expression ∀Q(Q ⊆ P ∧|Q| = 1). Notably, we can express

non-connectivity of a subset P ⊆ V by the formula nc(P ) defined as

∃Q ⊆ P,∃v, v′ ∈ P (v ∈ Q ∧ v′ ̸∈ Q ∧ ∀u,w ∈ P (u ∈ Q ∧ edge(u,w) ⇒ w ∈ Q)),

where edge(u,w) ≡
∨

s∈S u ·s = w. The set of formulas without free variables obtained with these operations

is denoted by MSO(Λ). We say Λ has decidable MSO logic, if the problem of determining if given a formula

in MSO(Λ) is satisfied is decidable.

The particular instance we are interested in is when Λ is the Cayley graph of a finitely generated group G

labeled by S a symmetric finite set of generators, that is, S = S−1 (we take such a set to avoid cumbersome

notation in this section). In this case, the root of our graph is the identity v0 = 1G. A landmark result in

the connection between MSO logic and tiling problems comes from Muller and Schupp [22, 23], as well as

Kuskey and Lohrey [20], who showed that virtually free groups have decidable MSO logic. In particular,

the domino problem can be expressed in MSO logic. Given a tileset graph Γ = (A,B), the formula

DP(Γ) ≡ ∃{Pa}a∈A

V =
∐
a∈A

Pa ∧
∧

(a,a′,s)̸∈B

Pa · s ∩ Pa′ = ∅

 ,

is satisfied if and only if Λ can be tiled by Γ. Therefore, the Domino Problem is decidable on virtually free

groups.

To express infinite paths and loops, given a tileset graph Γ = (A,B), we will partition a subset P ⊆ V

into subsets indexed by S and A, such that Ps,a will contain all vertices with the tile a that point through

s to the continuation of the snake. First, we express the property of always having a successor within P as

N(P, {Ps,a}) ≡
∧

s∈S,a∈A

(Ps,a · s ⊆ P ) .

We also want for this path to not contain any loops by asking for a unique predecessor for each vertex:

up(v) ≡ ∃!s ∈ S, a ∈ A : v ∈ Ps,a · s,

≡

∨
s∈S
a∈A

v ∈ Ps,a · s

 ∧

 ∧
a,a′∈A
a ̸=a′

∧
s,t∈S
s̸=t

¬((v ∈ Ps,a · s) ∧ (v ∈ Pt,a′ · t))

 .

Then, for a one-way infinite path

UP(P, {Ps,a}) ≡ ∀v ∈ P

(v = v0 ∧
∧

s∈S,a∈A

v ̸∈ Ps,a · s) ∨ (v ̸= v0 ∧ up(v))

 ,

Bringing the previous expressions together, the property of having an infinite path is as follows:

∞ray(P, {Ps,a}) ≡

v0 ∈ P ∧ P =
∐
s∈S
a∈A

Ps,a ∧N(P, {Ps,a}) ∧ UP (P, {Ps,a})

 .
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We express the property of having a simple loop within P by slightly changing the previous expressions.

The only caveat comes when working with the symmetric finite generating set of some group, as we must

avoid trivial loops such as ss−1.

ℓ(P, {Ps,a}) ≡ ∀v ∈ P,up(v) ∧
∧

s∈S,a,a′∈A

(
Ps,a · s ∩ Ps−1,a′ = ∅

)
.

This way, admitting a simple loop is expressed as

loop(P, {Ps,a}) ≡

v0 ∈ P ∧ P =
∐

s∈S,a∈A

Ps,a ∧N(P, {Ps,a}) ∧ ℓ(P, {Ps,a})


∧ ∀Q ⊆ P,∀{Qs,a} (¬∞ray(Q, {Qs,a})) .

Lemma 7.1. Let P ⊆ V . Then,

1. If there exists a partition {Ps,a}s∈S,a∈A such that ∞ray(P, {Ps,a}) is satisfied, P contains an infinite

injective path. Conversely, if P is the support of an injective infinite path rooted at v0, there exists a

partition {Ps,a}s∈S,a∈A such that ∞ray(P, {Ps,a}) is satisfied.

2. If there exists a partition {Ps,a}s∈S,a∈A such that loop(P, {Ps,a}) is satisfied, P contains a simple

loop. Conversely, if P is the support of a simple loop based at v0, there exists a partition {Ps,a}s∈S,a∈A

such that loop(P, {Ps,a}) is satisfied.

Proof. 1. Suppose ∞ray(P, {Ps,a}) is satisfied, for some partition {Ps,a}. We will recursively define an

injective 1-Lipschitz function f : N → P that will give us our path. Start by setting f(0) = v0. Because

the formula is satisfied, there exists a unique s ∈ S such that v0 · s ∈ P and we define f(1) = v0 · s.

Now, suppose we have already defined f(n). Then, there exists a unique s′ ∈ S such that f(n) ·s′ ∈ P ,

so we set f(n+ 1) = f(n) · s′. Thus, f is well-defined. In addition, f is injective because if there were

n,m ∈ N such that v = f(n) = f(m), v would have two distinct predecessors.

Next, if P supports an infinite injective path given by f : N → P with f(0) = v0, for all n ∈ N there

exists sn ∈ S such that f(n + 1) = f(n) · sn. We define the sets Ps,a = {f(n) | sn = s} for a fixed

a ∈ A, which partition P . Finally, as f is injective, every v ∈ P has a unique predecessor and therefore

∞ray(P, {Ps,a}) is satisfied.

2. Suppose loop(P, {Ps,a}) is satisfied, for some partition {Ps,a}. Then, as we did for the infinite path

case, we can define the function l : J0, nK → P with l(0) = l(n) = v0, for some n ≥ 3 by using the

fact that P satisfies N(P, {Ps,a}) (starting from v0 we can always find a successor) and that for every

subset Q ⊆ P the formula ∀{Qs,a}¬∞ray(Q, {Qs,a}) is satisfied (which tells us that P cannot contain

the support of an infinite ray) we know such an n must exist. As before we know l defines a simple

loop because P satisfies ℓ(P, {Ps,a}).
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Finally, let P supports a simple loop defined by l : J0, nK → P with l(0) = l(n) = v0. By definition,

for every i ∈ J0, n− 1K, there exists si ∈ S such that l(i+ 1) = l(i) · si. Thus, the partition defined by

the sets Ps,a = {ℓ(i) | si = s} for a fixed a ∈ A satisfies the required properties in virtue of P being a

simple non-trivial loop.

With these two structure-detecting formulas, we can simply add the additional constraint that P parti-

tions in a way compatible with the input tileset graph of the problem, in the direction of the snake. This is

captured by the formula

DΓ({Ps,a}) ≡
∧

(a,a′,s)̸∈B

∧
s′∈S

Pa,s · s ∩ Pa′,s′ = ∅.

Theorem 7.2. Let Λ be a Cayley graph of generating set S. The infinite snake problem, the reachability

problem and the ouroboros problem can be expressed in MSO(Λ).

Proof. Let Γ = (A,B) be a tileset graph for Λ. By Lemma 7.1, it is clear that

∞-snake(Γ) ≡ ∃P∃{Ps,a} (∞ray(P, {Ps,a}) ∧DΓ({Ps,a})) ,

ouroboros(Γ) ≡ ∃P∃{Ps,a} (loop(P, {Ps,a}) ∧DΓ({Ps,a})) ,

exactly capture the properties of admitting a one-way infinite Γ-snake and Γ-ouroboros respectively. Re-

member that Proposition 3.5 tells us that admitting a one-way infinite snake is equivalent to admitting a

bi-infinite snake. Finally, for reachibility, verifying the formula Reach(Γ, p, q) defined as

∃P∃{Ps,a}

p, q ∈ P ∧ ¬nc(P ) ∧ P =
∐
s∈S
a∈A

Ps,a ∧ UP (P, {Ps,a}) ∧DΓ({Ps,a})

 ,

is equivalent to P containing the support of a Γ-snake that connects p to q.

As previously mentioned, virtually free groups have decidable MSO logic for all generating sets. Thus,

we can state the following corollary.

Corollary 7.3. Both the normal and seeded versions of the infinite snake, reachability and ouroboros prob-

lems are decidable on virtually free groups, independently of the generating set.

Proof. Let Γ = (A,B) be a tileset graph with a0 ∈ A the targeted tile. Then adding the clause
∨

s∈S v0 ∈

Ps,a0 to the formulas of any of the problems in question, we obtain a formula that expresses its corresponding

seeded version.
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For the strong versions of these problems, notice that the structure detecting formulas do not really

use the fact that the partition is indexed by A. Therefore, Lemma 7.1 holds for the formulas ∞ray(P )

and loop(P ) that include an existential quantifier for a partition of P by subsets indexed only by S. By

modifying the Domino Problem formula, DP(Γ), to a formula DP(Γ, P ) that partitions P instead of the

whole vertex set we obtain,

strong-∞-snake(Γ) ≡ ∃P (∞ray(P ) ∧DP(Γ, P )) ,

strong-ouro(Γ) ≡ ∃P (loop(P ) ∧DP(Γ, P )) ,

strong-reach(Γ, p, q) ≡ ∃P (p, q ∈ P ∧ ¬nc(P ) ∧DP(Γ, P )) .

Corollary 7.4. Both the normal and seeded versions of the strong infinite snake, strong reachability and

strong ouroboros problems are decidable on virtually free groups, independently of the generating set.

8. Discussion and Open Questions

In the results presented, the snake problems on a group are always defined with respect to a fixed

generating set. This is not usually the case for decision problems of similar nature. Both the computability

of the Domino Problem and the word problem of a group is independent of the generating set. We have seen

some classes of groups for which the snake problems have this property (Zd in Proposition 5.5 and virtually

free groups in Corollary 7.3), but it is not clear if this is always the case.

Question 8.1. Is the decidability of snake problems on a group independent of the generating set?

In [19], the undecidability of the infinite snake problem on Z2 is obtained through a reduction from the

Domino Problem. We notice that in the presented results, the status of the infinite snake problem always

corresponds to that of the Domino Problem (undecidable for non-virtually Z virtually nilpotent groups and

decidable for virtually free groups). Is this always the case?

Question 8.2. Is there a group with undecidable Domino Problem and decidable infinite snake problem?

Is there a group where the inverse holds?
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