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Wang Tiles

• Our story begins with Wang tiles:

First introduced by Hao Wang in 1961.

• They can be placed side by side if they share the same color along
their common border.
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Domino Problem
Given a finite set τ of Wang tiles, does τ tile the plane?

Theorem (Berger ’64)
The Domino Problem is undecidable (Π0

1-comp.).
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Snakes!
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New Problem

An a priori weaker version of the Domino Problem:

Infinite Snake
Given a finite Wang tileset τ , does there exist a snake tiled by τ?

Theorem (Adleman, J. Kari, L. Kari, Reishus ’02)
The infinite snake problem in Z2 is undecidable (Π0

1-comp).
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Lineland

In Z both the Domino Problem and Infinite Snake Problem are decidable.
Why?
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Where is the Undecidability?

As was done for the Domino Problem, we study our problem in a
particular class of graphs: Cayley graphs of finitely generated infinite
groups.

F2 = ⟨a, b | ⟩

These graphs are infinite, locally finite, regular, transitive, edge labelled.
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Groups as Graphs

A Cayley graph is defined from a group G along with a finite generating
set S:

• Vertices are elements of G,

• There is an edge from g to h

if h = gs±1.
. . .
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Examples

⟨a, b, c | a2, b2, c2, (ab)3, (bc)3, (ac)3⟩
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More Examples

b
a

1G

(0, 1)

(1, 0)

n
n + 1

0 1

−n

b

a

Z × Z/3Z

⟨a, b | a3, b4⟩

(Z, {1, n})

⟨a, b | (ab)2⟩
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Words and Paths

Given a Cayley graph for a group G with generating set S, there is a
correspondence between paths and words in (S ∪ S−1)∗.

ababacbc

For instance, cycles are described by the set

WP(G, S) = {w ∈ (S ∪ S−1)∗ : w =G ε}.
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Formal snakes

Let τ be a Wang tileset. A τ -snake
is a pair of functions (ω, ζ):

• (Skeleton) ω : Z → G injective
s.t. ω(i + 1)ω(i)−1 ∈ S ∪ S−1,

• (Scales) ζ : Z → τ respecting
local adjacency rules.
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Strong snakes

In particular, we do not care if adjacent, but not sequentially adjacent,
tiles match.
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Results

Our investigation went along the following lines:

1. Reducing the problem from one group to another:
Virtually nilpotent groups that are not virtually Z admit a Cayley
graph with undecidable infinite snake problem.

2. Finding decidability by restricting possible skeletons:
The infinite snake problem on Z2 becomes decidable when
considering geodesic skeletons.

3. Expressing the problem in MSO logic:
Virtually free groups have decidable infinite snake problem on all
Cayley graphs.
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Skeletons

Given a Cayley graph for a group G with generating set S, there is a
correspondence between paths and words in (S ∪ S−1)∗.

ababacbc

For instance, cycles are described by the set

WP(G, S) = {w ∈ (S ∪ S−1)∗ : w =G ε}.
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Voyage to Lineland

This allows us to understand skeletons as bi-infinite words without loops.

...a a b b a a b a−1 a−1 a−1 b b a b−1 a b a a a a...
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Skeletons

Let G be a f.g. group with S a set of generators.

The skeleton set of the pair (G, S) is

XG,S = {x ∈ (S ∪ S−1)Z | ∀w ⊑ x, w ̸∈ WP(G, S)},

For instance:

XZ2,{a,b} =
{

x ∈ {a±1, b±1}Z : ∀w ⊑ x, |w|a ̸= |w|a−1 ∨ |w|b ̸= |w|b−1
}

.
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Y Skeletons?

Let Y ⊆ XG,S be a subset of skeletons.

Y -Snake Problem
Given a Wang tileset τ , does there exist a snake tiled by τ whose
skeleton is contained in Y ?

Lemma
If Y is a sofic shift, then the Y -snake problem is decidable.
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Snakes Fill the Emptiness

Lemma
If Y is sofic, then the Y -snake problem is decidable.

Proof sketch:

• Create a (S ∪ S−1)-edge labeled graph from the Wang tileset τ ,
denoted Γ.

• This defines a sofic set YΓ of labels of bi-infinite paths on Γ.
• There is a Y -snake iff Y ∩ YΓ ̸= ∅.
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Snakes Fill the Emptiness

Example of Γ:
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Snakes Fill the Emptiness

Example: ⟨a, b | (ab)2⟩
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Example: the Free Group

Proposition
The infinite snake problem is decidable in Fn, for the canonical
generating set.

Proof:

• Any word from WP(Fn, S) must contain a factor of the form ww−1

with w ∈ (S ∪ S−1)∗},
• Then, {ss−1 | s ∈ S ∪ S−1} is a set of forbidden patterns for XFn,S ,
• This means XFn,S is an SFT.
• By the previous Lemma, the problem is decidable.
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Geodesic Skeletons

A skeleton of particular interest is the set of bi-infinite geodesics:

Xg
G,S = {x ∈ XG,S : ∀w ⊑ x, w′ =G w : |w| ≤ |w′|} ⊆ XG,S

✓× ✓

Xg
Z2,{a,b} is sofic!
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No Curves

Theorem
The Y -snake problem on Z2 is decidable for:

• Geodesic skeletons,
• 3 or less canonical directions,

or in general:

Theorem
If a group G with generating set S has a set of geodesics that is regular,
then its geodesic snake problem is decidable.

This happens with many classes, such as abelian groups and hyperbolic
groups, for all generating sets.
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Results

Our investigation went along the following lines:
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MSO logic and Trees

Virtually free ⇐⇒ Finite tree-width ⇐⇒ Decidable MSO logic
[Muller, Schupp ’85] [Kuskey, Lohrey ’05]

Therefore, if the infinite snake problem can be expressed in MSO logic, it
is decidable for this class of groups.

Theorem
The infinite snake problem is decidable on virtually free groups, for every
generating set.
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MSO logic and Trees

MSO logic of an S labelled graph Γ consists in:

• Variables are subsets of vertices, along with the constant set {v0},
• an operation P · s, representing all the vertices reached from P

when reading s,
• Boolean operations ∨, ∧, ⊆, ¬, ... and quantifiers ∀, ∃

Theorem
The infinite snake problem is decidable on virtually free groups, for every
generating set.
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Thank you for listening!
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Spooky appendix



Groups, Graphs and Geometry

Let P be a group property (abelian, nilpotent, free, etc). We say a group
is virtually P if it contains a finite index subgroup satisfying P.

For instance, Z × Z/2Z is virtually Z, the Honeycomb group (Z2 ⋊ S3) is
virtually nilpotent, SL(2,Z) is virtually free.

Virtually nilpotent ⇐⇒ Polynomial growth rate,
[Gromov ’81]

Virtually free ⇐⇒ Finite tree-width.
[Muller, Schupp ’85]



Very Undecidable Skeletons

Corollary
If Y is an effective Z-subshift, then the Y -skeleton snake problem is Π0

1.

What happens if Y is not closed?

Theorem (Ebbinghaus ’86)
Let us have the Z2-skeletal subset

Y = {x ∈ {a, b, a−1, b−1}Z | x is not eventually a line.}

Then the Y -skeleton snake problem is Σ1
1-complete.
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Snakes in Space!

What happens in higher dimensions?

Proposition
The infinite snake problem in Zd, with d ≥ 2 is undecidable for all
generating sets.
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