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Wang Tiles

= Qur story begins with Wang tiles:
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First introduced by Hao Wang in 1961.

= They can be placed side by side if they share the same color along
their common border.
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Given a finite set 7 of Wang tiles, does 7 tile the plane?



Given a finite set 7 of Wang tiles, does 7 tile the plane?

Theorem (Berger '64)

The Domino Problem is undecidable (I1-comp.).
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New Problem: Snakes on a Plane

An a priori weaker version of the Domino Problem:

Infinite Snake

Given a finite Wang tileset 7, does there exist a snake tiled by 77



New Problem: Snakes on a Plane

An a priori weaker version of the Domino Problem:

Given a finite Wang tileset 7, does there exist a snake tiled by 77

Theorem (Adleman, J. Kari, L. Kari, Reishus '02)

The infinite snake problem in Z? is undecidable (I1{-comp).

Nevertheless, in Z both the Domino Problem and Infinite Snake Problem
are decidable. Why?



Where is the Undecidability?

As was done for the Domino Problem, we study our problem in a
particular class of graphs: Cayley graphs of finitely generated infinite

Fy={a,b|)

groups.

et

These graphs are infinite, locally finite, regular, transitive, edge labelled.



Groups as Graphs

A Cayley graph is defined from a group G along with a finite symmetric
generating set S:

= Vertices are elements of G,

gs1

= There is an edge from g to h 09Sn

if h = gst!.
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More Examples

T IT
‘L> D A u

b . ) \
\ . . -

\ ‘
(a,b | (ab)?) =_—=
7
(Z, {1,n})

ZxCs

11



Formal Snakes

Let 7 be a tileset. A 7-snake is a
pair of functions (w, ¢):

= (Skeleton) w : Z — G injective
st w(@)lwi@+1) €S,

= (Scales) ¢ : Z — T respecting
local adjacency rules.
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Words and Paths

Given a Cayley graph for a group GG with generating set S, there is a
correspondence between paths and words in S*.

For instance, cycles are described by the set

WP(G,S) ={w e S* | w =¢ €}
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Skeletons

This allows us to understand skeletons as bi-infinite words without loops.
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Skeletons

Let G be a finitely generated group with S a set of generators.

The skeleton of G with respect to S is

Xo.s ={z e S?|VwCz wgWPG,S)},

Examples:

Xzz (a1 p21y = {z € {a® 05} Y C x, jw|q # [w]a-1 V |wlp # [w]p-1}

For the infinite dihedral group Do = (a,b | a?,b?),

Xp fapy = {(ad)™, (ba)>}.
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Decidability

Theorem (Aubrun, B. '23)
If X s is sofic, then the infinite snake problem for (G, S) is decidable.

Questions

When is ¥ s sofic? SFT? Effective?
What are its periodic points?

What is its entropy?



Self-Avoiding Walks

= A self-avoiding walk (SAW) is a path on a graph that visits each
vertex at most once.

= For ¢(n) = number of SAWs of length n,
p(G,5) = lim {/c(n)
is know as the connective constant of the Cayley graph.

Examples:

= (Duminil-Copin, Smirnov '12) u(H) = /2 + /2,
= (Alm, Janson '90) u(L) = (1 + v/5),
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Self-Avoiding Walks

= A self-avoiding walk (SAW) is a path on a graph that visits each
vertex at most once.

= For ¢(n) = number of SAWs of length n,
p(G,5) = lim {/c(n)
is know as the connective constant of the Cayley graph.

Examples:

= (Duminil-Copin, Smirnov '12) u(H) = /2 + /2,
= (Alm, Janson '90) u(L) = (1 + v/5),
= u(Z?) = 7777 Open!

Best approx so far (Jacobsen, Scullard, Guttman '16):

1(Z?) = 2.63815853032790(3)
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More Motivations

In fact, X s is the set of labels of bi-infinite SAWs!

It also appears as Problem 108 in Rufus Bowen's notebook of problems:
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Sofic Snakes and SAWs

Theorem (Aubrun, B. '24)

G admits S such that ¥ g is sofic iff G is a plain group, Z x Z/27 or
Do X Z/27.

Proposition (Aubrun, B. '24)

For every group G, there exists S such that ¥ g is not sofic.



Sofic Snakes and SAWs

Theorem (Aubrun, B. '24)

G admits S such that ¥ s is sofic iff G is a plain group, Z x Z /27 or
Do X Z/27.

A group G is said to be plain if there are finite groups {G;}, and
n € N such that

G~ (>|< Gi> *[F,,.
i=1

G =17/3Z+17/4Z,
= {(a,b| a®b*).
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Sofic Snakes and SAWs

Theorem (Aubrun, B. '24)

G admits S such that ¥ g is sofic iff G is a plain group, Z x Z /27 or
Do x Z/2Z.

A group G is said to be plain if there are finite groups {G;}, and
n € N such that

G~ (:l: Gi> xF,.
i=1

Theorem (Aubrun, B. '24)
G admits S s.t. ¥ g is an SFT iff G is a plain group.




Step 1: Torsion

First off, by Kénig's lemma,
Ao s =@ < G is finite.

Then,

Theorem (Aubrun, B. '24)

G is a torsion group iff ¥ g is aperiodic for (any) all generating sets S.

Torsion groups can never have sofic skeletons!



Proposition (Aubrun, B. '24)

For every group G, there exists S such that ¥ g is not sofic.

We can use the Pumping Lemma to show being sofic depends on the
generating set. For a torsion-free element ¢ € G we add s = g2 and
t = g% to S so we can find a copy of Cay(Z, {£2, £3}).

IRITIIIIK
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Proposition (Aubrun, B. '24)

For every group G, there exists S such that ¥ s is not sofic.

We can use the Pumping Lemma to show being sofic depends on the
generating set. For a torsion-free element ¢ € G we add s = g2 and
t = g% to S so we can find a copy of Cay(Z, {£2, £3}).

Vn € N, L({g s) contains the configuration ts" "¢~ 1s™" on which we
use the Pumping Lemma.
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Step 2: Ends

= First we show that all ends are thin and of size at most 2.

L
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Step 2: Ends

= First we show that all ends are thin and of size at most 2.

L

= [f there is an end of size 2, then G is virtually Z.

| |
Nl
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Step 3: Plain and Virtually Z

Lemma (Aubrun, B. '24)

If G ¢ {Z, Doo, Z X /27, Do, X Z/27} and virtually Z, then every
Cayley graph of GG has ends of size > 3.

Theorem (Haring-Smith '83 + Lindorfer, Woess '20)
G is plain iff it admits a Cayley graph with ends of size 1.



Rigolo Properties

» Nop(Xa,s) = log(u(G, 9)),
= G recursively presented = ¥ g is effective V.S,
= ¥ minimal = all proper quotients of G are finite,

= There exists G s.t. for every S, ¥ ¢ is effective and has no
computable points,

= For some groups and generators (including Z4, d > 2),

htOP(XG s) = lim M

n—oo n

for ¢(n) = number of periodic points of period n.
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Thank you for listening!




