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Wang Tiles

• Our story begins with Wang tiles:

First introduced by Hao Wang in 1961.

• They can be placed side by side if they share the same color along
their common border.
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Domino Problem
Given a finite set τ of Wang tiles, does τ tile the plane?

Theorem (Berger ’64)
The Domino Problem is undecidable (Π0

1-comp.).
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Snakes!
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New Problem: Snakes on a Plane

An a priori weaker version of the Domino Problem:

Infinite Snake
Given a finite Wang tileset τ , does there exist a snake tiled by τ?

Theorem (Adleman, J. Kari, L. Kari, Reishus ’02)
The infinite snake problem in Z2 is undecidable (Π0

1-comp).

Nevertheless, in Z both the Domino Problem and Infinite Snake Problem
are decidable. Why?
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Where is the Undecidability?

As was done for the Domino Problem, we study our problem in a
particular class of graphs: Cayley graphs of finitely generated infinite
groups.

F2 = ⟨a, b | ⟩

These graphs are infinite, locally finite, regular, transitive, edge labelled.
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Groups as Graphs

A Cayley graph is defined from a group G along with a finite symmetric
generating set S:

• Vertices are elements of G,

• There is an edge from g to h

if h = gs±1.
. . .
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Examples

H = ⟨a, b, c | a2, b2, c2, (ab)3, (bc)3, (ac)3⟩
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More Examples

b
a

1G

(0, 1)

(1, 0)

n
n + 1

0 1

−n

b

a

Z × C3

⟨a, b | a3, b4⟩

(Z, {1, n})

⟨a, b | (ab)2⟩
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Formal Snakes

Let τ be a tileset. A τ -snake is a
pair of functions (ω, ζ):

• (Skeleton) ω : Z → G injective
s.t. ω(i)−1ω(i + 1) ∈ S,

• (Scales) ζ : Z → τ respecting
local adjacency rules.
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Words and Paths

Given a Cayley graph for a group G with generating set S, there is a
correspondence between paths and words in S∗.

ababacbc

For instance, cycles are described by the set

WP(G, S) = {w ∈ S∗ | w =G ε}.
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Skeletons

This allows us to understand skeletons as bi-infinite words without loops.

...a a b b a a b a−1 a−1 a−1 b b a b−1 a b a a a a...
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Skeletons

Let G be a finitely generated group with S a set of generators.

The skeleton of G with respect to S is

G,S = {x ∈ SZ | ∀w ⊑ x, w ̸∈ WP(G, S)},

Examples:

Z2,{a±1,b±1} =
{

x ∈ {a±1, b±1}Z : ∀w ⊑ x, |w|a ̸= |w|a−1 ∨ |w|b ̸= |w|b−1
}

.

For the infinite dihedral group D∞ = ⟨a, b | a2, b2⟩,

D∞,{a,b} = {(ab)∞, (ba)∞}.
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Decidability

Theorem (Aubrun, B. ’23)
If G,S is sofic, then the infinite snake problem for (G, S) is decidable.

Questions
When is G,S sofic? SFT? Effective?
What are its periodic points?
What is its entropy?
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Self-Avoiding Walks

• A self-avoiding walk (SAW) is a path on a graph that visits each
vertex at most once.

• For c(n) = number of SAWs of length n,

µ(G, S) = lim
n→∞

n
√

c(n)

is know as the connective constant of the Cayley graph.

Examples:

• (Duminil-Copin, Smirnov ’12) µ(H) =
√

2 +
√

2,
• (Alm, Janson ’90) µ(L) = 1

2 (1 +
√

5),

• µ(Z2) = ???? Open!

Best approx so far (Jacobsen, Scullard, Guttman ’16):

µ(Z2) ≈ 2.63815853032790(3)
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More Motivations

In fact, G,S is the set of labels of bi-infinite SAWs!

It also appears as Problem 108 in Rufus Bowen’s notebook of problems:
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Sofic Snakes and SAWs

Theorem (Aubrun, B. ’24)
G admits S such that G,S is sofic iff G is a plain group, Z × Z/2Z or
D∞ × Z/2Z.

Proposition (Aubrun, B. ’24)
For every group G, there exists S such that G,S is not sofic.
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Gi
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b

a

G = Z/3Z ∗ Z/4Z,

= ⟨a, b | a3, b4⟩.
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Sofic Snakes and SAWs

Theorem (Aubrun, B. ’24)
G admits S such that G,S is sofic iff G is a plain group, Z × Z/2Z or
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i=1 and
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)
∗ Fn.

Theorem (Aubrun, B. ’24)
G admits S s.t. G,S is an SFT iff G is a plain group.
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Step 1: Torsion

First off, by Kőnig’s lemma,

G,S = ∅ ⇐⇒ G is finite.

Then,

Theorem (Aubrun, B. ’24)
G is a torsion group iff G,S is aperiodic for (any) all generating sets S.

Torsion groups can never have sofic skeletons!
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Oh No

Proposition (Aubrun, B. ’24)
For every group G, there exists S such that G,S is not sofic.

We can use the Pumping Lemma to show being sofic depends on the
generating set. For a torsion-free element g ∈ G we add s = g2 and
t = g3 to S so we can find a copy of Cay(Z, {±2, ±3}).

t
s
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Oh No

Proposition (Aubrun, B. ’24)
For every group G, there exists S such that G,S is not sofic.

We can use the Pumping Lemma to show being sofic depends on the
generating set. For a torsion-free element g ∈ G we add s = g2 and
t = g3 to S so we can find a copy of Cay(Z, {±2, ±3}).

t
s

∀n ∈ N, L( G,S) contains the configuration tsn+1t−1s−n on which we
use the Pumping Lemma.
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Step 2: Ends

• First we show that all ends are thin and of size at most 2.

• If there is an end of size 2, then G is virtually Z.
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Step 3: Plain and Virtually Z

Lemma (Aubrun, B. ’24)
If G /∈ {Z, D∞, Z × Z/2Z, D∞ × Z/2Z} and virtually Z, then every
Cayley graph of G has ends of size ≥ 3.

Theorem (Haring-Smith ’83 + Lindorfer, Woess ’20)
G is plain iff it admits a Cayley graph with ends of size 1.
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Rigolo Properties

• htop( G,S) = log(µ(G, S)),

• G recursively presented =⇒ G,S is effective ∀S,

• G,S minimal =⇒ all proper quotients of G are finite,

• There exists G s.t. for every S, G,S is effective and has no
computable points,

• For some groups and generators (including Zd, d ≥ 2),

htop( G,S) = lim
n→∞

log(q(n))
n

,

for q(n) = number of periodic points of period n.
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Thank you for listening!
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