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Wang Tiles

= Qur story begins with Wang tiles:

v
A

First introduced by Hao Wang in 1961.

= They can be placed side by side if they share the same color along
their common border.
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Given a finite set 7 of Wang tiles, does 7 tile the plane?



Given a finite set 7 of Wang tiles, does 7 tile the plane?

Theorem (Berger '64)

The Domino Problem is undecidable (I1-comp.).



Consequences

The Domino Problem has been used to prove the undecidability of

= Seeded Domino Problem,

= Recurrent Domino Problem,

= k-SAT on 72,

= Injectivity and Surjectivity of 2D CA,
= Infinite Snake Problem,

= Translational Monotilings,

= Spectral gap of quantum many-body systems.

. and more!
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Planting the Seeds of Undecidability

Seeded Domino Problem

Given a Wang tileset 7 and a tile to, does there exist a tiling x : Z2 — 7
such that (0,0) = to?

Theorem (Kahr, Moore and Wang '62)

The Seeded Domino Problem is undecidable (I19-complete)

Reduction: Halting Problem from blank tape.



Recurrent Domino Problem

Given a Wang tileset 7 and a tile ¢y, does there exist a tiling x : 72 > 7
such that ty appear infinitely often?

Theorem (Harel '83)

The Recurrent Domino Problem is undecidable (X1-complete)

Reduction: State Recurrence problem for non-deterministic Turing Machines.



k-SAT

Freedman defined the following infinite generalization of SAT:

Take elements {v;;} C Z? and define the formula

m

¢ = /\((v“)' V.l V(o))

where v’ represents v or the negation —w.

Definition
The k-SAT problem for Z?2 asks, given a formula with & literals ¢ and
(p,q) € N2, if there is an assignation of truth values o : Z? — {0, 1}
such that

/\ /\ alu+vi) V... Valu+uvg)) =1,

ueH i=1
where H = pZ x qZ.



k-SAT

Take v; = (0,0), v2 = (1,0) and vs = (0, 1).
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If we take H = (2Z)?:




k-SAT

Take v; = (0,0), vy = (1,0) and v3 = (0, 1).
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If we take H = (27Z)*:




k-SAT

Take v; = (0,0), vy = (1,0) and v3 = (0, 1).
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If we take H = (27Z)*:




k-SAT

Take v; = (0,0), vy = (1,0) and v3 = (0, 1).
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If we take H = (2Z)*:




k-SAT

Take v1 = (0,0), v2 = (1,0) and v3 = (0, 1).

¢ = ("’Ul \/1)2 \/’1)3)

If we take H = (27Z):
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k-SAT

Take v; = (0,0), v2 = (1,0) and vz = (0,1).
¢ = (w1 Vg Vus)

If we take H = (27Z):

Theorem (Freedman '99)
The 3-SAT problem on Z? is undecidable.

Reduction from the Domino Problem.
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Where is the Undecidability?

All the previous problems become decidable on Z! Why?

Swamp of 3
Undecidability ? . Decidable

z? z
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Where is the Undecidability?

As was done for the Domino Problem, we study our problems on finitely

Fo=(a,b])

generated groups.

e

We can understand these groups by their Cayley graphs. These graphs

are infinite, locally finite, regular, transitive, edge labelled. b



Groups as Graphs

A Cayley graph is defined from a group G along with a finite generating

set S:
g

= Vertices are elements of G,

= There is an edge from g to h 09Sn

if h = gs*1.

g2
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A generalization of Wang Tiles

We generalize Wang tiles through the concept of tileset graphs.
Definition

A tileset graph is a finite graph I' = (Vr, Er) where Er C Vi x S x Vb,
We say a tiling « : G — Vr respects I if for every g € G,

(z(g),x(gs), s) € Er.

b
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a 7% = {(a,b | ab = ba)
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Our Favorite Problems

Seeded Domino Problem

Given a tileset graph I and a tile t(, does there exist a tiling z : G — V¢
that respects I" such that z(1g) = ?

Recurrent Domino Problem

Given a tileset graph I' and a tile ¢y, does there exist a tiling z : G — Vp
that respects I' such that ¢y appear infinitely often?

We denote these decision problems by SDP(G, S) and RDP(G, S)
respectively
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For the Seeded and Recurrent Domino Problem:

= Their decidability does not depend on the generating set,
= For a subgroup H < G, SDP(H) <, SDP(G),

= For a finite index subgroup, SDP(H) =, SDP(G),

= The Domino Problem reduces to SDP(G).

RDP(F,,) is decidable.



Balloons

Theorem
RDP(F,,) is decidable.

The algorithm consists on finding "balloon" like stuctures on the tileset graph.
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Expanding the Conjecture

Joining these facts with

The Domino Conjecture
DP(G) is decidable iff G is virtually free

we obtain

Corollary

If the Domino Conjecture is true then, TFAE:
G is virtually free,
DP(G) is decidable,
SDP(G) is decidable,
RDP(G) is decidable.



Our Other Favorite Problem

Take words {w;;} C (SUS™!)* and define the formula

= /\((wil)'V~-~V (wir)"),

where w’ represents v or the negation —w.
Definition
The k-SAT problem for G asks, given a formula with £ literals ¢ and

{u;}, € (SUS™1)*, if there is an assignation of truth values
a: G — {0,1} such that

A /\ (hgi1)' V ...V alhga)') = 1,

heH i=1

where H = (uq, ..., up), and g;; = ;.
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Lemma

The subgroup membership problem (SMP) reduces to 2-SAT(G).

If G has decidable SMP, then 2-SAT(G) reduces to DP(G). In
particular, 2-SAT(G) is decidable for virtually free groups.



Theorem

Suppose G admits a strict finite index subgroup H < G such that
H ~ G. Then, DP(G) reduces to 3-SAT(G).

Corollary

3-SAT(G) is undecidable for
74, d > 2,
Solvable Baumslag-Solitar groups,
the Lamplighter group,
the Heisenberg group,
7% x GL(d, Z).



Coding Dominos

Theorem

Suppose G admits a strict finite index subgroup H < G such that
H ~ G. Then, DP(G) reduces to 3-SAT(G).

For a tileset of size n, take a subgroup of index > [log,(n)] and code
each tile.

If G =72 and n = 4, take H = Z x 27 and vy = (0,0), v; = (0,1):

0 ,
—> 0 — 1 = —wy A g
. F—> — ¢y =1 Ay
. > —  ¢3 =W AV

— = ¢4 =v1 AUz



Coding Dominos

HHH‘:H._.._.O
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OHH‘OCOHO
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Y= ( \/ ¢v(1G)> A /\ ﬁ(Zsa(lG) \ ﬁqsb(fm(s))

veVr (a,b,5)¢ Br
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Thank you for listening!



Embedding computation

a

6(g,a) = (q',b,0)

= (¢,b1)

A

¥(q,a) = (¢',b,-1)

V
b



Embedding computation
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