
Strongly Aperiodic SFTs on Generalized
Baumslag-Solitar groups
Séminaire Dynamique et Probabilités - LAMFA

Nicolás Bitar
October, 2022

LISN - Université Paris-Saclay



Full-shift

Let A be a finite alphabet and G a finitely generated group.

Definition:
The full-shift AG is the space of all configurations x : G → A.
With the product metric this is a Cantor space.

There is a natural action G ↷ AG called the shift:

σg(x)h = xg−1h.
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Cayley graph

We can see a subshift explicitly as the coloring of the group’s
Cayley graph.

Definition:
Let G = 〈S〉 be a finitely generated group. Cay(G, S) is the graph
defined by:
▶ The vertex set V = G,
▶ There is an edge from g to gs for all s ∈ S.
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Cayley graph

b
a

〈a, b | (ab)2〉 F2 = 〈a, b |〉
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Subshifts

Definition
Let F be a set of patterns. We define a subshift as

XF := {x ∈ AG | no pattern in F appears in x}

If |F | < +∞, we say XF is a subshift of finite type (SFT).

There is an alternative topological definition:

Proposition
X is a subshift iff it is a closed G-invariant subset of AG.
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Subshifts

Example of a configuration on 〈a, b | (ab)2〉:

A =
{ }
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Aperiodicity & Minimality

Definition
A subshift X 6= ∅ is strongly aperiodic if the group action is free.

∀x ∈ X, σg(x) = x =⇒ g = 1G.

Definition
Let X be a subshift. We say X is minimal if the orbit of every
configuration is dense.
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Aperiodicity

Which groups admit strongly aperiodic subshifts?

Theorem (Gao, Jackson, Seward ’09)
Every countable group G has a non-empty, strongly aperiodic
subshift over the alphabet {0, 1}.

Theorem (Bernhsteyn ’19)
Every countable group G has a non-empty, strongly aperiodic
minimal subshift.

7



Aperiodicity

Which groups admit strongly aperiodic subshifts?

Theorem (Gao, Jackson, Seward ’09)
Every countable group G has a non-empty, strongly aperiodic
subshift over the alphabet {0, 1}.

Theorem (Bernhsteyn ’19)
Every countable group G has a non-empty, strongly aperiodic
minimal subshift.

7



Aperiodicity

Which groups admit strongly aperiodic subshifts?

Theorem (Gao, Jackson, Seward ’09)
Every countable group G has a non-empty, strongly aperiodic
subshift over the alphabet {0, 1}.

Theorem (Bernhsteyn ’19)
Every countable group G has a non-empty, strongly aperiodic
minimal subshift.

7



Aperiodicity

Can we have aperiodicity if we restrict ourselves to a finite amount
of local rules?

Proposition
There are no strongly aperiodic Z-SFT.

Theorem (Berger ’66)
Z2 admits a strongly aperiodic SFT.
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Orbit Coding

Proof of the Theorem (Kari ’96):

▶ We code orbits of a simple dynamical system(
[ 1
10 , 2

5 ]/ 1
10 ∼ 2

5
, T
)
.

T : x 7→


5
2x if x ∈ [ 1

10 ; 1]

1
10x if x ∈]1; 5

2 [

T (x)

11
10 5

2

x
1
4

5
2

▶ T admits immortal points and is aperiodic.
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Orbit Coding

▶ An elements x ∈ [0, 1] is coded through a balanced
representation.

Bk(x) = b(k + 1)xc − bkxc

▶ We say a tile calculates T if

t

r

b

l T (t) + r = b + l
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Orbit coding

T (x)

x
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Orbit coding

T 2(x)

x
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Orbit coding

T k(x)

x
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Orbit coding

If we have a period (i, j):

▶ We have that T j(x) = x.
▶ Aperiodicity of T implies j = 0.
▶ Each Z-coset contains an i-periodic word.
▶ Because there is a finite number of periodic configs, we arrive

at T k(x) = T k′(x).
▶ Therefore, i = 0.
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Obstructions

Which groups admit strongly aperiodic SFTs?

Theorem (Cohen ’17)
Groups with two or more ends cannot have strongly aperiodic
SFTs.

Theorem (Jeandel ’15)
If G has a strongly aperiodic SFT, then it has decidable word
problem.
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Conjecture

Conjecture
G admits a strongly aperiodic SFT iff it is one-ended and has
decidable word problem.
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Classes of groups

It has been solved for some classes of groups!

▶ Zd for d ≥ 2 (Culik, Kari ’96),

▶ Hyperbolic groups (Cohen, Goodman-Strauss, Rieck ’17),

▶ Monster groups, G × Z for G with property PA (Jeandel ’15),

▶ Z2 ⋊ H for H f.g. with decidable WP (Barbieri, Sablik ’18),

▶ Groups with self-simulable 0-dim dynamics (Barbieri, Sablik, Salo ’21),

▶ Residually finite BS groups (Esnay, Moutot ’21)
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Invariance properties

Theorem (Cohen ’17)
Admitting strongly aperiodic SFTs is a quasi-isometry invariant for
finitely presented groups.

18



Our contribution

Theorem (Aubrun, B., Huriot-Tattegrain ’22)
All non-Z Generalized Baumslag-Solitar groups have undecidable
domino problem and admit strongly aperiodic SFTs.

t

a a

t

a a a
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Generalized Baumslag-Solitar groups

Generalized Baumslag-Solitar groups are a generalization of
Baumslag-Solitar groups introduced by Forester in 2003.

This class contains:

▶ All Baumslag-Solitar groups:

BS(m, n) = 〈a, t | t−1amt = an〉.

▶ (p, q)-Torus knot groups:

Λpq = 〈a, b | apb−q〉.

▶ Combinations: 〈a, b, c | b−1a3b = a5, a4c2〉
▶ And more!
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Classification by QI

Theorem (Whyte ’04)
For any Generalized Baumslag-Solitar group G exactly one of the
following is true:

1. G = BS(1, n) for some n > 1,
2. G contains a finite index subgroup isomorphic to Fn × Z,
3. G is quasi-isometric to BS(2, 3).
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Puzzle pieces

Theorem (Aubrun, Schraudner ’20, Esnay, Moutot ’22)
The groups BS(1, n) with n > 1 admit strongly aperiodic SFTs.

Proposition
There exists a minimal strongly aperiodic SFT on Fn × Z.

Proposition
The Baumslag-Solitar group BS(2, 3) admits a strongly aperiodic
SFT.

22



Puzzle pieces

Theorem (Aubrun, Schraudner ’20, Esnay, Moutot ’22)
The groups BS(1, n) with n > 1 admit strongly aperiodic SFTs.

Proposition
There exists a minimal strongly aperiodic SFT on Fn × Z.

Proposition
The Baumslag-Solitar group BS(2, 3) admits a strongly aperiodic
SFT.

22



Puzzle pieces

Theorem (Aubrun, Schraudner ’20, Esnay, Moutot ’22)
The groups BS(1, n) with n > 1 admit strongly aperiodic SFTs.

Proposition
There exists a minimal strongly aperiodic SFT on Fn × Z.

Proposition
The Baumslag-Solitar group BS(2, 3) admits a strongly aperiodic
SFT.

22



Path-folding

Both propositions are proved through path-folding:

1. Flow shift: We create an SFT which specifies an infinite path.
2. Folding: We "fold" an aperiodic configuration (from Z2 or the

hyperbolic plane) along the path specified by the flow.
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Fn × Z: Flow shift

Take Fn = 〈s1, ..., sn〉 and Z = 〈t〉. The flow shift Yf is defined by:

▶ The alphabet A = {s1, ..., sn, s−1
1 , ..., s−1

n },
▶ Local rules:

yg = s =⇒


ygs 6= s−1

ygs′ = (s′)−1 ∀s′ 6= s

ygt = s

b a b−1 a−1
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Fn × Z: Flow shift
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Fn × Z: Flow shift

There is a bijection W : Yf → AN, that is, every config is
determined by a unique infinite word.

Lemma
If y ∈ Yf has period gtk ∈ Fn × Z, then W (y) is either the infinite
word gN or the infinite word (g−1)N.
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Fn × Z: Path-folding

Let X be a horizontally expanding nearest neighbor Z2-SFT. We
define a subshift Z ⊆ X × Yf :

▶ Horizontal rules rest the same along t.
▶ Vertical rules follow the direction of the generator at the

second coordinate.
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Fn × Z: Path-folding
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Fn × Z: Lifting the result

Proposition
Let G be a finitely generated group and H a finite index normal
subgroup. If H admits a minimal strongly aperiodic SFT, then G

also does.

Proposition
There exists a minimal strongly aperiodic Z2-SFT.
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BS(2, 3)

Take BS(2, 3) = 〈a, t | t−1a2t = a3〉 . The flow shift Yf is defined
by:

▶ The alphabet A = {t, at, t−1, at−1, a2t−1},
▶ Local rules:

• yg = yga2 if yg ∈ {t, at},
• yg = yga3 if yg ∈ {t−1, at−1, a2t−1},
• if yg = u, then ∀v ∈ A \ {u}: ygv = v−1
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BS(2, 3): Flow shift

1

p
(1)
1 = t

1

p
(2)
1 = t−1

1

p
(3)
1 = at

1

p
(4)
1 = at−1

1

p
(5)
1 = a2t−1
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BS(2, 3): Periods

We have a bijection W : Yf → AN.

Proposition
If y ∈ Yflow has period g ∈ BS(2, 3) with decomposition
g−1 = wak, then W (y) is either the infinite word wN or the infinite
word (w−1)N.
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BS(2, 3): Tiles

Wang tiles on BS(2, 3) are interpreted as a 7−tuple:

t1 t2

ℓ r

b1 b2 b3

We say the tile computes a function f : I ⊂ R → I if

f

(
t1 + t2

2

)
+ ℓ = b1 + b2 + b3

3
+ r.
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BS(2, 3): Encoding orbits

Once again we use the function:

T : x 7→


5
2x if x ∈ [ 1

10 ; 1]

1
10x if x ∈]1; 5

2 [

and its inverse

T −1 : x 7→


10x if x ∈] 1

10 ; 1
4 [

2
5x if x ∈ [1

4 ; 5
2 ]
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BS(2, 3): Path-folding

We define tiles that compute the functions:

t1(x, g) x2(x, g)

ℓ(T, x, g) r(T, x, g)

b1(T, x, g) b2(T, x, g) b3(T, x, g)

t1(x, g) t2(x, g)

ℓ(T −1, x, g) r(T −1, x, g)

b1(T −1, x, g) b2(T −1, x, g) b3(T −1, x, g)

We obtain two finite tileset τT and τT −1 .
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BS(2, 3): Path-folding

We combine the tilesets τ = τT ∪ τT −1 .
The SFT Z ⊆ τBS(2,3) × Yf is defined as follows:

▶ if yg = t then τg ∈ τT ;
▶ if yg ∈ {at, t−1, t−1, at−1, a2t−1} then τg ∈ τT −1 .
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BS(2, 3): Path-folding

x
g

yg = t

T (x)

T −1(x)
T −1(x)

T −1(x)

T −1(x)

x
g

yg = t−1

T −1(x)

T (x)
T −1(x)

T −1(x)

T −1(x)

x
g

yg = at

T −1(x)

T −1(x)
T (x)

T −1(x)

T −1(x)

x
g

yg = at−1

T −1(x)

T −1(x)
T −1(x)

T (x)

T −1(x)

x
g

yg = a2t−1

T −1(x)

T −1(x)
T −1(x)

T −1(x)

T (x)
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BS(2, 3): Main result

Theorem
Z is a strongly aperiodic BS(2, 3)-SFT.

Sketch:

▶ If we have a period g = wak, we have W (y) = wN

▶ Aperiodicity of T implies g = a−k

▶ Each 〈a〉-coset contains a k-periodic word
▶ Then following the flow we find a period for T .
▶ Therefore, k = 0.
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Consequences

Adding Cohen’s theorem to the mix:

Corollary
Non-residually finite Baumslag-Solitar groups BS(m, n) with
m, n > 1 and m 6= n admit strongly aperiodic SFTs.
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Thank you for listening!
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Appendix



Graph of groups

Definition
A graph of groups (Γ, G) is a connected graph Γ, with a collection
G that includes:
▶ a vertex group Gv for each v ∈ VΓ,
▶ an edge group Ge for each e ∈ EΓ, where Ge = Gē,
▶ a set of injections {αe : Ge → Gt(e) | e ∈ EΓ}, where t(e) is

the terminal vertex of e.

If we take all Gv = Ge = Z we get a Generalized Baumslag-Solitar
group.



Graph of groups

Theorem
Let T ⊆ Γ be a spanning tree. The group π1(Γ, G, T ) is isomorphic
to a quotient of the free product of the vertex groups, with the
free group on the set EΓ of oriented edges. That is,(

∗
v∈VΓ

Gv ∗ F (EΓ)
)

/R,

where R is the normal closure of the subgroup generated by the
following relations
▶ αē(h)e = eαe(h), where e is an oriented edge of Γ, h ∈ Ge,
▶ ē = e−1, where e is an oriented edge of EΓ,
▶ e = 1 if e is an oriented edge of T0.



Fn × Z: Minimality

y σab(y)

σa2b(y) σ(ab)2(y)



Domino Problem

Proposition
All non-Z Generalized Baumslag-Solitar groups have undecidable
domino problem.

Corollary
All non-free Artin groups have undecidable domino problem.
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